Determining The Number of Principal Components with Schur's Theorem in Principal Component Analysis
نویسندگان
چکیده
Principal Component Analysis is a method for reducing the dimensionality of datasets while also limiting information loss. It accomplishes this by producing uncorrelated variables that maximize variance one after other. The accepted criterion evaluating Component’s (PC) performance λ_j/tr(S) where tr(S) denotes trace covariance matrix S. standard procedure to determine how many PCs should be maintained using predetermined percentage total variance. In study, diagonal elements are used instead eigenvalues need considered obtain defined threshold For this, an approach which uses important theorems majorization theory proposed. Based on tests, lowers computational costs.
منابع مشابه
Principal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملSelecting the number of components in principal component analysis using cross-validation approximations
Cross-validation is a tried and tested approach to select the number of components in principal component analysis (PCA), however, its main drawback is its computational cost. In a regression (or in a non parametric regression) setting, criteria such as the general cross-validation one (GCV) provide convenient approximations to leave-one-out crossvalidation. They are based on the relation betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bitlis Eren üniversitesi fen bilimleri dergisi
سال: 2023
ISSN: ['2147-3188', '2147-3129']
DOI: https://doi.org/10.17798/bitlisfen.1144360